Участник:Index/Флексим: различия между версиями

Нет описания правки
Нет описания правки
Строка 21: Строка 21:
Но стоит помнить, что тэг использует только 1/10 часть тепловой энергии из чего следует, что 9/10 тепловой энергии, которую мы пропустим через насос ТЭГа, уйдет в космос. По этому у этого способа малая эффективность на большое количество потраченного топлива.
Но стоит помнить, что тэг использует только 1/10 часть тепловой энергии из чего следует, что 9/10 тепловой энергии, которую мы пропустим через насос ТЭГа, уйдет в космос. По этому у этого способа малая эффективность на большое количество потраченного топлива.
|}
|}
</div>
</div><div class="flex-item">
<div class="flex-item">
===Холодный контур===
===Холодный контур===
Для работы ТЭГа, кроме Горячего контура, также необходимо настроить и Холодный. Тем не менее, Холодный контур обычно менее технологичен, чем Горячий; на самом деле "холодным" он должен быть лишь относительно, важна лишь весомая разница между температурами в насосах, так что подойдёт и комнатная температура.
Для работы ТЭГа, кроме Горячего контура, также необходимо настроить и Холодный. Тем не менее, Холодный контур обычно менее технологичен, чем Горячий; на самом деле "холодным" он должен быть лишь относительно, важна лишь весомая разница между температурами в насосах, так что подойдёт и комнатная температура.
Строка 37: Строка 36:
Пропускать газ через радиаторы расположеные в космосе – вариация для значительно больших объемов газа. В отличие от охладителей, способен охлаждать в разы больший и не требует питания для своей работы, что позволяет без проблем создать систему для гигапаскалей (ГПа) обрабатываемого газа. Для экономии пространства вы можете накладывать друг на друга. Для повышения эффективности просто увеличьте проходимый путь газа через космос. За частую хватает 2-3 радиатора.
Пропускать газ через радиаторы расположеные в космосе – вариация для значительно больших объемов газа. В отличие от охладителей, способен охлаждать в разы больший и не требует питания для своей работы, что позволяет без проблем создать систему для гигапаскалей (ГПа) обрабатываемого газа. Для экономии пространства вы можете накладывать друг на друга. Для повышения эффективности просто увеличьте проходимый путь газа через космос. За частую хватает 2-3 радиатора.
|}
|}
</div>
</div></div>
</div>


{{#css:
{{#css:
Строка 46: Строка 44:


.flex-container {
.flex-container {
width: 100%;
  display: flex;
  display: flex;
  flex-direction: row;
  flex-direction: row;
flex-wrap: wrap;
justify-content: space-evenly;
column-gap: 12px;
}
}


.flex-item {
.flex-item {
flex: 1 1 400px;
}
}
}}
}}

Версия от 18:53, 8 декабря 2025

Горячий контур

Как сказал однажды один мудрец: "Лучший способ сделать что-то горячим - поджечь это". Чтож, возможно не всегда это самый лучший вариант, но к счастью в вашем отделе есть всё необходимое, чтобы делать это с умом.
Кроме сказанного выше, существует множество способов чтобы нагреть (или охладить) газы.

Способы реализации Горячего контура

Нагреватель

Нагреватели используются в установках малого количества газа, так как хоть и способны обеспечивать температуру, стремящуюся к 593,15 К (320°C), имеет ограничение в количестве обрабатываемого газа, что можно компенсировать использованием нескольких нагревателей.
По мимо обычного нагревателя можно поставить адский нагреватель после исследований научного отдела, который хоть и нагревает до 593,15 К (320°C), и выделяет часть тепла в атмосферу, которую можно использовать, но у них есть общая проблема.

Малая эффективность и большое требование к питанию из-за чего потребление может быть выше чем выработка тока.

Камера сжигания

Пропускать сжигаемые газы через насос. Является относительно простой системой на сжигании плазмы с кислородом. Главным преимуществом является получаемая температура – свыше 30-40 тыщ. К, но использует огромные количества кислорода и плазмы для достижения подобных температур. Рекомендуемое соотношение от 1% плазмы к 99% кислорода до 3% плазмы к 97% кислорода. Чем меньше размеры камеры – тем больше получаемая температура и меньше расход топлива. Перед использованием рекомендуется провести несколько опытов по достижению необходимого соотношения и температуры.

Но стоит помнить, что тэг использует только 1/10 часть тепловой энергии из чего следует, что 9/10 тепловой энергии, которую мы пропустим через насос ТЭГа, уйдет в космос. По этому у этого способа малая эффективность на большое количество потраченного топлива.

Холодный контур

Для работы ТЭГа, кроме Горячего контура, также необходимо настроить и Холодный. Тем не менее, Холодный контур обычно менее технологичен, чем Горячий; на самом деле "холодным" он должен быть лишь относительно, важна лишь весомая разница между температурами в насосах, так что подойдёт и комнатная температура.

Способы реализации Холодного контура

Охладитель

Использование охладителя имеет недостатки, схожие с использованием нагревателя. Малый объем охлаждающего газа, минимальная возможная температура охлаждения до 73,15 К (-200°C) и до 23,15 К (-250°C) при адском охладителе, является самым малоэффективным методом.

Радиатор

Пропускать газ через радиаторы расположеные в космосе – вариация для значительно больших объемов газа. В отличие от охладителей, способен охлаждать в разы больший и не требует питания для своей работы, что позволяет без проблем создать систему для гигапаскалей (ГПа) обрабатываемого газа. Для экономии пространства вы можете накладывать друг на друга. Для повышения эффективности просто увеличьте проходимый путь газа через космос. За частую хватает 2-3 радиатора.